Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1346284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628585

RESUMO

Objective: This study aims to analyze the association between the occurrence of thyroid nodules and various factors and to establish a risk factor model for thyroid nodules. Methods: The study population was divided into two groups: a group with thyroid nodules and a group without thyroid nodules. Regression with the least absolute shrinkage and selection operator (Lasso) was applied to the complete dataset for variable selection. Binary logistic regression was used to analyze the relationship between various influencing factors and the prevalence of thyroid nodules. Results: Based on the screening results of Lasso regression and the subsequent establishment of the Binary Logistic Regression Model on the training dataset, it was found that advanced age (OR=1.046, 95% CI: 1.033-1.060), females (OR = 1.709, 95% CI: 1.342-2.181), overweight individuals (OR = 1.546, 95% CI: 1.165-2.058), individuals with impaired fasting glucose (OR = 1.590, 95% CI: 1.193-2.122), and those with dyslipidemia (OR = 1.588, 95% CI: 1.197-2.112) were potential risk factors for thyroid nodule disease (p<0.05). The area under the curve (AUC) of the receiver operating characteristic (ROC) curve for the Binary Logistic Regression Model is 0.68 (95% CI: 0.64-0.72). Conclusions: advanced age, females, overweight individuals, those with impaired fasting glucose, and individuals with dyslipidemia are potential risk factors for thyroid nodule disease.


Assuntos
Dislipidemias , Nódulo da Glândula Tireoide , Feminino , Humanos , Nódulo da Glândula Tireoide/epidemiologia , Nódulo da Glândula Tireoide/diagnóstico , Modelos Logísticos , Sobrepeso/complicações , Fatores de Risco , Glucose
2.
Cell Signal ; 119: 111170, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604344

RESUMO

Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.

3.
Biol Trace Elem Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619679

RESUMO

In this study, the aim was to investigate the correlation between varying levels of urinary iodine concentration (UIC) in adults and the occurrence of thyroid diseases, with the additional objective of determining the optimal iodine status level for adults. A cross-sectional study was conducted on adults from six areas with different drinking water iodine concentrations (WIC) without eating iodized salt in Heze and Jining counties, Shandong Province, China. A total of 1336 adults were included in this study, and drinking water samples, blood samples, urine samples, thyroid ultrasound, and a questionnaire were collected. UIC, free triiodothyronine (FT3), free thyroid hormone (FT4), thyroid-stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TgAb) were detected. There were no significant differences in the detection rates of hypothyroidism and thyroid autoimmunity (TAI) among the different median UIC groups (UIC < 100 µg/L, 100-199 µg/L, 200-299 µg/L, ≥ 300 µg/L). However, the detection rates of hypothyroidism were higher in the UIC < 100 µg/L group (16.67%) and the UIC ≥ 300 µg/L group (16.51%) compared to the other groups. The detection rate of TAI increased as UIC levels increased. The detection rate of thyroid nodule (TN) in the UIC < 100 µg/L group was significantly higher than that in the UIC 200-299 µg/L UIC group (χ2 = 10.814, P = 0.001). After adjusting confounding factors, it was found that low UIC (< 100 µg/L) was a risk factor for TN (OR 1.83, 95% CI [1.04-3.22]). Meanwhile, there no statistical difference between UIC 200 and 299 µg/L and UIC 100 and199 µg/L for OR of hypothyroidism, TAI, and TN. This study identified associations between different UIC levels and the prevalence of thyroid disorders, with low UIC (< 100 µg/L) posing a risk for TN, and the detection rate of TN and hypothyroidism was the lowest in UIC (200-299 µg/L) group. Therefore, the acceptable UIC range of 'adequate' iodine intake among adults can be widened from 100-199 µg/L to 100-299 µg/L.

4.
Fish Shellfish Immunol ; : 109531, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604479

RESUMO

In this study, we present the first cloning and identification of perforin (MsPRF1) in largemouth bass (Micropterus salmoides). The full-length cDNA of MsPRF1 spans 1572 base pairs, encoding a 58.88 kDa protein consisting of 523 amino acids. Notably, the protein contains MACPF and C2 structural domains. To evaluate the expression levels of MsPRF1 in various healthy largemouth bass tissues, real-time quantitative PCR was employed, revealing the highest expression in the liver and gut. After the largemouth bass were infected by Nocardia seriolae, the mRNA levels of MsPRF1 generally increased within 48 h. Remarkably, the recombinant protein MsPRF1 exhibits inhibitory effects against both Gram-negative and Gram-positive bacteria. Additionally, the largemouth bass showed a higher survival rate in the N. seriolae challenge following the intraperitoneal injection of rMsPRF1, with observed reductions in the tissue bacterial loads. Moreover, rMsPRF1 demonstrated a significant impact on the phagocytic and bactericidal activities of largemouth bass MO/MΦ cells, concurrently upregulating the expression of pro-inflammatory factors. These results demonstrate that MsPRF1 has a potential role in the immune response of largemouth bass against N. seriolae infection.

5.
Front Neurosci ; 18: 1288380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469574

RESUMO

Background: Cerebral small vessel disease (CSVD) attaches people's attention in recent years. In this study, we aim to explore retinal structure and vessel density changes in CSVD patients. Methods: We collected information on retinal metrics assessed by optical coherence tomography (OCT) and OCT angiography and CSVD characters. Logistic and liner regression was used to analyze the relationship between retinal metrics and CSVD. Results: Vessel density of superficial retinal capillary plexus (SRCP), foveal density- 300 length (FD-300), radial peripapillary capillary (RPC) and thickness of retina were significantly lower in CSVD patients, the difference only existed in the thickness of retina after adjusted relevant risk factors (OR (95% CI): 0.954 (0.912, 0.997), p = 0.037). SRCP vessel density showed a significant downward trend with the increase of CSVD scores (ß: -0.087, 95%CI: -0.166, -0.008, p = 0.031). SRCP and FD-300 were significantly lower in patients with lacunar infarctions and white matter hypertensions separately [OR (95% CI): 0.857 (0.736, 0.998), p = 0.047 and OR (95% CI): 0.636 (0.434, 0.932), p = 0.020, separately]. Conclusion: SRCP, FD-300 and thickness of retina were associated with the occurrence and severity of total CSVD scores and its different radiological manifestations. Exploring CSVD by observing alterations in retinal metrics has become an optional research direction in future.

6.
Commun Biol ; 7(1): 362, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521872

RESUMO

Muscarinic acetylcholine receptor M3 (M3) and its downstream effector Gq/11 are critical drug development targets due to their involvement in physiopathological processes. Although the structure of the M3-miniGq complex was recently published, the lack of information on the intracellular loop 3 (ICL3) of M3 and extensive modification of Gαq impedes the elucidation of the molecular mechanism of M3-Gq coupling under more physiological condition. Here, we describe the molecular mechanism underlying the dynamic interactions between full-length wild-type M3 and Gq using hydrogen-deuterium exchange mass spectrometry and NanoLuc Binary Technology-based cell systems. We propose a detailed analysis of M3-Gq coupling through examination of previously well-defined binding interfaces and neglected regions. Our findings suggest potential binding interfaces between M3 and Gq in pre-assembled and functionally active complexes. Furthermore, M3 ICL3 negatively affected M3-Gq coupling, and the Gαq AHD underwent unique conformational changes during M3-Gq coupling.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Receptores Muscarínicos , Receptores Muscarínicos/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química
7.
Transl Res ; 270: 1-12, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38556109

RESUMO

The prevalence of renal ischemia/reperfusion injury (IRI) in premenopausal women is considerably lower than that in age-matched men. This suggests that sex-related differences in mitochondrial function and homeostasis may contribute to sexual dimorphism in renal injury, though the mechanism remains unclear. Mouse model of unilateral left renal IRI with contralateral kidney enucleation, Ovariectomy in female mice, and a human embryonic kidney (HEK) cell model of hypoxia-reoxygenation were used to study how estrogen affects the sexual dimorphism of renal IRI through SIRT3 in vitro and in vivo, respectively. Here, we demonstrate differential expression of renal SIRT3 may induce sexual dimorphism in IRI using the renal IRI model. Higher SIRT3 level in female mice was associated with E2-induced protection of renal tubular epithelium, reduced mitochondrial reactive oxygen species (ROS), and IRI resistance. In hypoxia-reoxygenated HEK cells, SIRT3 knockdown increased oxidative stress, shifted the interconnected mitochondrial network toward fission, exacerbated hypoxia/reoxygenation-induced endoplasmic reticulum stress (ERS), and abolished the protective effects of E2 on IRI. Mechanistically, the SIRT3 level is E2-dependent and that E2 increases the SIRT3 protein level via estrogen receptor. SIRT3 targeted an i-AAA protease, yeast mitochondrial AAA metalloprotease (YME1L1), and hydrolyzed long optic atrophy 1 (L-OPA) to short-OPA1 (S-OPA1) by deacetylating YME1L1, regulating mitochondrial dynamics toward fusion to reduce oxidative stress and ERS. These findings explored the mechanism by how estrogen alleviates renal IRI and providing a basis for potential therapeutic interventions targeting SIRT3.

8.
Small Methods ; : e2400076, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470225

RESUMO

The injectable hydrogels can deliver the loads directly to the predetermined sites and form reservoirs to increase the enrichment and retention of the loads in the target areas. The preparation and injection of injectable hydrogels involve the sol-gel transformation of hydrogels, which is affected by factors such as temperature, ions, enzymes, light, mechanics (self-healing property), and pH. However, tracing the injection, degradation, and drug release from hydrogels based on different ways of gelation is a major concern. To solve this problem, contrast agents are introduced into injectable hydrogels, enabling the hydrogels to be imaged under techniques such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, and radionuclide imaging. This review details methods for causing the gelation of imageable hydrogels; discusses the application of injectable hydrogels containing contrast agents in various imaging techniques, and finally explores the potential and challenges of imageable hydrogels based on different modes of gelation.

9.
Exp Gerontol ; 188: 112395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452990

RESUMO

BACKGROUND: Chronic Post-Stroke Fatigue (PSF) is a common and persistent complications among ischemic stroke survivors. The serum glycated hemoglobin (HbA1c) level, as it is known has emerged as a critical risk factor for Acute Ischemic Stroke (AIS) and post-stroke cognitive and emotional impairment. However, no studies have been conducted on the link between HbA1c and PSF. Therefore, this study aims to estimate the relationship between HbA1c and PSF in the chronic phase. METHODS: A longitudinal study was conducted on 559 patients diagnosed with their first AIS episode and admitted to Suining Central Hospital within three days after onset. All patients were examined for serum HbA1c, blood glucose levels and routine blood biochemical indicators at admission. The Fatigue Severity Scale (FSS) was employed to assess fatigue symptoms at six months post-stroke. Multivariate logistic regression and smooth curve fitting were used to analyze the relationship between admission HbA1c, blood glucose levels, discharge blood glucose and PSF, and the predictive value of HbA1c on PSF was assessed using a segmented linear regression model. RESULTS: 189(33.8 %)of the 559 patients included in the study, reported PSF at six-month follow-up. Compared with the non-PSF group, the PSF group displayed significantly higher levels of HbA1c (7.8 ± 3.0 vs 6.5 ± 2.0 %, P < 0.001), admission blood glucose (7.8 ± 3.8 vs 7.1 ± 3.5 mmol/L, P = 0.041), and discharge blood glucose (6.3 ± 1.6 vs 5.8 ± 1.2 mmol/L, P < 0.001). The dose-response relationship among admission HbA1c, blood glucose, discharge blood glucose and PSF showed that HbA1c level is positively and non-linearly related to the risk of PSF. A linear positive correlation is noted between PSF and discharge blood glucose levels, while no significant correlation was observed for the blood glucose levels upon admission. CONCLUSIONS: Higher HbA1c levels at admission were independently associated with the risk of chronic PSF, the correlation between blood glucose and PSF showed significant variability, HbA1c may serve as a more stable risk factor in predicting the occurrence of chronic PSF and long-term active glycemic management may have a favorable impact on chronic PSF after AIS.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Hemoglobinas Glicadas , AVC Isquêmico/complicações , Glicemia , Isquemia Encefálica/complicações , Estudos Longitudinais , Acidente Vascular Cerebral/complicações , Fadiga/diagnóstico , Fadiga/etiologia
10.
Stroke ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545773

RESUMO

BACKGROUND: The structure and staffing of hospitals greatly impact patient outcomes, with frequent changes occurring during nights and weekends. This retrospective cohort study assessed the impact of admission timing on in-hospital management and outcomes for patients with stroke receiving reperfusion therapy in China using data from a nationwide registry. METHODS: Data from patients receiving reperfusion therapy were extracted from the Chinese Stroke Center Alliance. Hospital admission time was categorized according to day/evening versus night and weekday versus weekend. Primary outcomes were in-hospital death or discharge against medical advice, hemorrhage transformation, early neurological deterioration, and major adverse cardiovascular events. Logistic regression was performed to compare in-hospital management performance and outcomes based on admission time categories. RESULTS: Overall, 42 381 patients received recombinant tissue-type plasminogen activator (r-tPA) therapy, and 5224 underwent endovascular treatment (EVT). Patients admitted during nighttime had a higher probability of receiving r-tPA therapy within 4.5 hours from onset or undergoing EVT within 6 hours from onset compared with those admitted during day/evening hours (adjusted odds ratio, 1.04 [95% CI, 1.01-1.08]; P=0.021; adjusted odds ratio, 1.72 [95% CI, 1.59-1.86]; P<0.001, respectively). However, no significant difference was observed between weekend and weekday admissions for either treatment. No notable differences were noted between weekends and weekdays or nighttime and daytime periods in door-to-needle time for r-tPA or door-to-puncture time for EVT initiation. Furthermore, weekend or nighttime admission did not have a significant effect on the primary outcomes of r-tPA therapy or EVT. Nevertheless, in patients undergoing EVT, a higher incidence of pneumonia was observed among those admitted at night compared with those admitted during day/evening hours (adjusted odds ratio, 1.22 [95% CI, 1.05-1.42]; P=0.011). CONCLUSIONS: Patients admitted at nighttime were more likely to receive r-tPA therapy or EVT within the time window recommended in the guidelines. However, patients receiving EVT admitted at night had an increased risk of pneumonia.

11.
J Biochem Mol Toxicol ; 38(4): e23684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533528

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide. Circular RNA (circRNA) circ_0088036 is a recently discovered circRNA known for its roles in rheumatoid arthritis. The study aimed to study the function of circ_0088036 in lung adenocarcinoma (LUAD). Circ_0088036 expressions were analyzed in the Gene Expression Omnibus (GEO) database. The relationship between circ_0088036 expressions and clinicopathological data of LUAD was assessed. The messenger RNA and protein levels were analyzed by quantitative real-time polymerase chain reaction and Western blot. Cell viability, apoptosis, and invasion were tested by Cell Counting Kit-8, flow cytometry, and transwell assay. The direct interaction between microRNA-203 (miR-203) and circ_0088036 or specificity protein 1 (SP1) was confirmed by dual-luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation assays. Circ_0088036 was overexpressed in LUAD from the analysis of the GEO database. The poor prognosis was found in the patients with high expressions of circ_0088036. The level of Circ_0088036 was increased in LUAD tissues and cells. In terms of function, the deletion of circ_0088036 inhibited LUAD tumorigenesis in vitro by repressing cell growth, invasion, and epithelial-mesenchymal transition (EMT). In mechanism, circ_0088036 could competitively sponge miR-203, thereby affecting the expressions of the target gene SP1. In addition, lessening of miR-203 and enlarging of SP1 could eliminate the anticancer effect of short hairpin RNA-circ_0088036 on LUAD cells. Besides, the knockout of circ_0088036 hindered the growth of xenografted tumors in vivo. Circ_0088036 promoted the LUAD cell growth, invasion, and EMT via modulating the miR-203/SP1 axis in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Linhagem Celular Tumoral , Proliferação de Células , RNA Circular
12.
CNS Neurosci Ther ; 30(3): e14681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516845

RESUMO

BACKGROUND: Peroxiredoxin 2 (Prx2), an intracellular protein that regulates redox reactions, released from red blood cells is involved in inflammatory brain injury after intracerebral hemorrhage (ICH). Toll-like receptor 4 (TLR4) may be crucial in this process. This study investigated the role of the Prx2-TLR4 inflammatory axis in brain injury following experimental ICH in mice. METHODS: First, C57BL/6 mice received an intracaudate injection of autologous arterial blood or saline and their brains were harvested on day 1 to measure Prx2 levels. Second, mice received an intracaudate injection of either recombinant mouse Prx2 or saline. Third, the mice were co-injected with autologous arterial blood and conoidin A, a Prx2 inhibitor, or vehicle. Fourth, the mice received a Prx2 injection and were treated with TAK-242, a TLR4 antagonist, or saline (intraperitoneally). Behavioral tests, magnetic resonance imaging, western blot, immunohistochemistry/immunofluorescence staining, and RNA sequencing (RNA-seq) were performed. RESULTS: Brain Prx2 levels were elevated after autologous arterial blood injection. Intracaudate injection of Prx2 caused brain swelling, microglial activation, neutrophil infiltration, neuronal death, and neurological deficits. Co-injection of conoidin A attenuated autologous arterial blood-induced brain injury. TLR4 was expressed on the surface of microglia/macrophages and neutrophils and participated in Prx2-induced inflammation. TAK-242 treatment attenuated Prx2-induced inflammation and neurological deficits. CONCLUSIONS: Prx2 can cause brain injury following ICH through the TLR4 pathway, revealing the Prx2-TLR4 inflammatory axis as a potential therapeutic target.


Assuntos
Lesões Encefálicas , Sulfonamidas , Receptor 4 Toll-Like , Animais , Camundongos , Lesões Encefálicas/etiologia , Hemorragia Cerebral/metabolismo , Inflamação/etiologia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Peroxirredoxinas/metabolismo , Peroxirredoxinas/farmacologia , Peroxirredoxinas/uso terapêutico , Receptor 4 Toll-Like/metabolismo
13.
Aging (Albany NY) ; 16(5): 4469-4502, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38441550

RESUMO

BACKGROUND: Prostate cancer is the most common malignancy among men worldwide, and its diagnosis and treatment are challenging due to its heterogeneity. METHODS: Integrating single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data, we identified two molecular subtypes of prostate cancer based on dysregulated genes involved in oxidative stress and energy metabolism. We constructed a risk score model (OMR) using common differentially expressed genes, which effectively evaluated prostate cancer prognosis. RESULTS: Our analysis demonstrated a significant correlation between the risk score model and various factors, including tumor immune microenvironment, genomic variations, chemotherapy resistance, and immune response. Notably, patients with low-risk scores exhibited increased sensitivity to chemotherapy and immunotherapy compared to those with high-risk scores, indicating the model's potential to predict patient response to treatment. Additionally, our investigation of MXRA8 in prostate cancer showed significant upregulation of this gene in the disease as confirmed by PCR and immunohistochemistry. Functional assays including CCK-8, transwell, plate cloning, and ROS generation assay demonstrated that depletion of MXRA8 reduced the proliferative, invasive, migratory capabilities of PC-3 cells, as well as their ROS generation capacity. CONCLUSIONS: Our study highlights the potential of oxidative stress and energy metabolism-related genes as prognostic markers and therapeutic targets in prostate cancer. The integration of scRNA-seq and bulk RNA-seq data enables a better understanding of prostate cancer heterogeneity and promotes personalized treatment development. Additionally, we identified a novel oncogene MXRA8 in prostate cancer.


Assuntos
Oncogenes , Neoplasias da Próstata , Humanos , Masculino , Metabolismo Energético/genética , Estresse Oxidativo/genética , Prognóstico , Neoplasias da Próstata/genética , Espécies Reativas de Oxigênio , Microambiente Tumoral/genética , Proteínas de Membrana/genética , Imunoglobulinas/genética
14.
Eur J Med Res ; 29(1): 149, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429764

RESUMO

BACKGROUND: As a traditional Mongolian medicine, Zhenzhu Tongluo pills has played a good neuroprotective function in clinic. However, the key mechanisms by which it works are poorly studied. OBJECTIVES: To study the effect and mechanism of Zhenzhu Tongluo pills in treating diabetic peripheral neuropathy injury. METHODS: Diabetic peripheral neuropathy model was established by injecting STZ into rats. Physiological, behavioral, morphological and functional analyses were used to evaluate that the overall therapeutic effect of rats, ELISA, qRT-PCR, Western blot, immunohistochemical staining, HE staining and TUNEL staining were used to further study the related mechanism. RESULTS: Zhenzhu Tongluo pills can significantly improve the physiological changes, behavioral abnormalities, structural and functional damage in diabetic peripheral neuropathy rats, which may be related to the anti-inflammatory and anti-apoptotic effects that realized by regulating PI3K/AKT, MAPK, NF-κB signaling pathways. CONCLUSIONS: Zhenzhu Tongluo pills has neuroprotective effect, and anti-inflammatory and anti-apoptosis may be the important way of its function.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Medicamentos de Ervas Chinesas , Ratos , Animais , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Fosfatidilinositol 3-Quinases , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , NF-kappa B/metabolismo , Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
15.
Nat Cell Biol ; 26(4): 628-644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514841

RESUMO

Excessive inflammation is the primary cause of mortality in patients with severe COVID-19, yet the underlying mechanisms remain poorly understood. Our study reveals that ACE2-dependent and -independent entries of SARS-CoV-2 in epithelial cells versus myeloid cells dictate viral replication and inflammatory responses. Mechanistically, SARS-CoV-2 NSP14 potently enhances NF-κB signalling by promoting IKK phosphorylation, while SARS-CoV-2 ORF6 exerts an opposing effect. In epithelial cells, ACE2-dependent SARS-CoV-2 entry enables viral replication, with translated ORF6 suppressing NF-κB signalling. In contrast, in myeloid cells, ACE2-independent entry blocks the translation of ORF6 and other viral structural proteins due to inefficient subgenomic RNA transcription, but NSP14 could be directly translated from genomic RNA, resulting in an abortive replication but hyperactivation of the NF-κB signalling pathway for proinflammatory cytokine production. Importantly, we identified TLR1 as a critical factor responsible for viral entry and subsequent inflammatory response through interaction with E and M proteins, which could be blocked by the small-molecule inhibitor Cu-CPT22. Collectively, our findings provide molecular insights into the mechanisms by which strong viral replication but scarce inflammatory response during the early (ACE2-dependent) infection stage, followed by low viral replication and potent inflammatory response in the late (ACE2-independent) infection stage, may contribute to COVID-19 progression.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2 , NF-kappa B , Replicação Viral
17.
Proc Natl Acad Sci U S A ; 121(14): e2317492121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547056

RESUMO

Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.


Assuntos
Amoeba , Linhagem Celular Tumoral , Movimento Celular , Fenômenos Físicos
18.
Neural Netw ; 173: 106150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330747

RESUMO

Accurate short-term load forecasting (STLF) is crucial for maintaining reliable and efficient operations within power systems. With the continuous increase in volume and variety of energy data provided by renewables, electric vehicles and other sources, long short-term memory (LSTM) has emerged as an attractive approach for STLF due to its superiorities in extracting the dynamic temporal information. However, traditional LSTM training methods rely on stochastic gradient methods that have several limitations. This paper presents an innovative LSTM optimization framework via the alternating direction method of multipliers (ADMM) for STLF, dubbed ADMM-LSTM. Explicitly, we train the LSTM network distributedly by the ADMM algorithm. More specifically, we introduce a novel approach to update the parameters in the ADMM-LSTM framework, using a backward-forward order, significantly reducing computational time. Additionally, within the proposed framework, the solution to each subproblem is achieved by utilizing either the proximal point algorithm or local linear approximation, preventing the need for supplementary numerical solvers. This approach confers several advantages, including avoiding issues associated with exploding or vanishing gradients, thanks to the inherent gradient-free characteristics of ADMM-LSTM. Furthermore, we offer a comprehensive theoretical analysis that elucidates the convergence properties inherent to the ADMM-LSTM framework. This analysis provides a deeper understanding of the algorithm's convergence behavior. Lastly, the efficacy of our method is substantiated through a series of experiments conducted on two publicly available datasets. The experimental results demonstrate the superior performance of our approach when compared to existing methods.


Assuntos
Algoritmos , Memória de Longo Prazo , Previsões
19.
Sci Technol Adv Mater ; 25(1): 2309912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333111

RESUMO

The control incorporation of metals in silica hollow spheres (SHSs) may bring new functions to silica mesoporous structures for applications including catalysis, sensing, molecular delivery, adsorption filtration, and storage. However, the strategies for incorporating metals, whether through pre-loading in the hollow interior or post-encapsulation in the mesoporous shell, still face challenges in achieving quantitative doping of various metals and preventing metal aggregation or channel blockage during usage. In this study, we explored the doping of different metals into silica hollow spheres based on the dissolution-regrowth process of silica. The process may promote the formation of more structural defects and functional silanol groups, which could facilitate the fixation of metals in the silica networks. With this simple and efficient approach, we successfully achieved the integration of ten diverse metal species into silica hollow sphere (SHS). Various single-metal, dual-metal, triple-metal, and quadruple-metal doped SHSs have been prepared, with the doped metals being stable and homogeneously dispersed in the structure. Based on the structural characterizations, we analyzed the influence of metal types on the morphology features of SHSs. The synergistic effects of multi-metals on the catalysis applications were also studied and compared.


Significance of this work: The control incorporation of metals in silica hollow spheres (SHSs) may bring new functions to silica mesoporous structures for applications including catalysis, sensing, molecular delivery, adsorption filtration, and storage. The incorporation of metals within SHSs is always either at the interior core or in the porous shells. The former method mainly utilizes metal nanoparticles as the core and regulates the synthesis of outer porous silica shells. The latter is primarily driven by the capillary force or intermolecular interactions with surface ligands to facilitate the post-loading of metal species in porous silica structures. The main problems associated with metal-doped SHSs include 1) controlled loading of different metals with a homogeneous distribution; 2) fixation of metal species in the structures to prevent aggregation during usage, particularly at high temperatures; 3) pore channel blockage after metal loading, which may hinder the loading of other external molecules. In this work, we developed the dissolution-regrowth of silica strategy for integrating various metals in porous SHSs (M@SHSs) by a one-pot hydrothermal process without using any anchoring molecules. Unlike other sol-gel formations, the growth rate of silica in this process is greatly reduced. It thus may bring more possibilities to introduce external metals within the silica frameworks instead of in the porous channels. By regulating the addition of metal salts in the silica nanoparticles dispersions, we have successfully synthesized stable and highly homogeneous single-metal, dual-metal, triple-metal, and quadruplemetal doped SHSs. Based on the structural characterizations, we analyzed the influence of metal types on the morphology features of SHSs. The synergistic effects of multi-metals on the catalysis applications were also studied and compared. Our results offer a facile and effective strategy for preparing multi-metals as nano-catalysts. Through proper design of the doped metals in SHSs, the structures should find more applications in catalysis, drug delivery, and adsorption with unique and enhanced properties.

20.
Dev Biol ; 510: 8-16, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403101

RESUMO

Physiological root resorption is a common occurrence during the development of deciduous teeth in children. Previous research has shown that the regulation of the inflammatory microenvironment through autophagy in DDPSCs is a significant factor in this process. However, it remains unclear why there are variations in the autophagic status of DDPSCs at different stages of physiological root resorption. To address this gap in knowledge, this study examines the relationship between the circadian clock of DDPSCs, the autophagic status, and the periodicity of masticatory behavior. Samples were collected from deciduous teeth at various stages of physiological root resorption, and DDPSCs were isolated and cultured for analysis. The results indicate that the circadian rhythm of important autophagy genes, such as Beclin-1 and LC3, and the clock gene REV-ERBα in DDPSCs, disappears under mechanical stress. Additionally, the study found that REV-ERBα can regulate Beclin-1 and LC3. Evidence suggests that mechanical stress is a trigger for the regulation of autophagy via REV-ERBα. Overall, this study highlights the importance of mechanical stress in regulating autophagy of DDPSCs via REV-ERBα, which affects the formation of the inflammatory microenvironment and plays a critical role in physiological root resorption in deciduous teeth.


Assuntos
Relógios Circadianos , Reabsorção da Raiz , Criança , Humanos , Reabsorção da Raiz/genética , Proteína Beclina-1/genética , Ritmo Circadiano/genética , Células-Tronco , Dente Decíduo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...